Конденсаторы

.

Слово «конденсатор» происходит от латинского condensare, означающего сгущать, уплотнять. История изобретения конденсаторов весьма поучительна и позволяет глубже понять физическую сущность, а, следовательно, и применимость на практике этого компонента электронных устройств.

Из родословной конденсатора
Не вдаваясь особо в туманную, как всегда, историю изобретения конденсаторов, укажем лишь, что рождение произошло в середине XVIII в.
Соборный декан в Померании фон Клейст, держа в одной руке медицинскую склянку с небольшим количеством ртути или винного спирта, вставил в нее гвоздь и наэлектризовывал его свободный конец. Прикосновение к гвоздю вызывало искры и сильные электрические удары. Это устройство назвали бутылкой Клейста.
Голландский физик Мушенбрек из г. Лейден провел аналогичные опыты со стеклянной банкой, заполненной водой и опять-таки гвоздем, один из концов которого был погружен в нее. Удар, полученный им в одном из опытов, он не соглашался повторить даже «ради короны Франции». Это устройство назвали лейденской банкой.
Аббат Нолле, ставший «придворным электриком», в обязанности которого входила организация увеселений двора Людовика XV с помощью электричества, в присутствии короля повторил опыт Мушенброка, но не на себе. Он образовал цепь из 180 гвардейцев, взявшихся за руки, причем первый держал заряженную банку в руке, а последний, замыкая цепь солдат, касался торчащей из нее проволоки, извлекая искру. Реакция бравых гвардейцев была весьма сильной. От этой цепи солдат произошел термин «электрическая цепь». Хорошо, что энергии, накопленной в банке, было не достаточно для печальных последствий. Однако ее хватало, чтобы убить воробья, что впервые и осуществил этот «аббат». Поэтому его смело можно назвать первым в ряду изобретателей «электрического стула» и электрошоковых устройств.
Не трудно видеть, что первые изобретатели исходили из понятий «электрической жидкости», которую привычно разливали по разным сосудам…
Более детальные и продуктивные опыты провел Франклин, исследовавший роль диэлектрика (стекло), разделяющего обкладки: рука-гвоздь в лейденской банке. Вылив воду из заряженного конденсатора, он залил его новой водой и обнаружил, что он опять заряжен. Отсюда он сделал вывод о том, что заряды противоположных знаков «сидят» на двух поверхностях стекла. Ошибка Франклина была обнаружена только в 1922 г. Адденбруком. В специальном разборном конденсаторе он заменил стекло парафином и показал роль адсорбированной пленки воды в опыте Франклина.
Эта ошибка нисколько не умаляет многих других заслуг этого ученого и политического деятеля, и его следы мы видим не только на стодолларовой купюре: знаки «+» и «-» для разноименных электрических зарядов ввел именно Франклин. Однако и он не избежал проведения опытов над животными: «Самым крупным существом, которое нам удалось умертвить электрическим ударом, был довольно крупный цыпленок», — пишет Франклин в своих сочинениях.
Возвращаясь на научную стезю, особо следует отметить работы Фарадея по исследованиям различных диэлектриков, используемых в конденсаторах. Вообще Фарадей сделал много разных замечательных открытий, но вошел в парад знаменитых ученых, именами которых были названы единицы измерения, благодаря исследованиям диэлектриков. Да и сам этот термин ввел в физику Фарадей. Он смастерил специальный сферический конденсатор — два металлических шара — один внутри другого. Это — обкладки, а пространство между ними заполнял различными веществами и проводил измерения электрической емкости конденсатора. Не случайно поэтому, единице электрической емкости дано наименование «фарад».
Плоский конденсатор мы обнаруживаем в электрометре Вольта: его верхний ввод был выполнен из двух горизонтальных пластин, изолированных друг от друга лаком.
Блочно-пакетная конструкция конденсаторов в виде стопки чередующихся полосок металлической фольги, разделенных изоляционными слоями, была предложена русским электротехником П. Н. Яблочковым во второй половине XIX в. Им же были предвосхищены так называемые «электролитические конденсаторы».

Основные типы конденсаторов
Различают конденсаторы постоянной и переменной емкости.
В зависимости от того, какой материал использован в качестве диэлектрика, конденсаторы бывают: воздушными, бумажными, керамическими, пленочными и др.

Основными характеристиками конденсаторов являются: номинальная емкость, выражаемая в фарадах (Ф) и дольных единицах (мкФ, нФ, пФ и т. д.); допуск в процентах от номинального значения; максимальное допустимое напряжение. Общее число факторов, учитываемых при выборе конденсаторов, доходит до 18.
Номинальная емкость конденсаторов с указанием допуска, а также рабочее напряжение в основном проставляются на их корпусах. Однако в последние годы, цветовые художества появились и на конденсаторах. Геометрические же формы конденсаторов весьма разнообразны: диски, цилиндры, призмы и т. д. Весьма популярные танталовые сухие оксидные конденсаторы имеют каплеобразную форму, напоминая головастиков с двумя лапками.
Цветовые метки, это и кольца, и полосы, и пятна, и размещаются по-всякому. Так что «Палата № 6» здесь присутствует в полном составе. Хорошо еще, что иногда проставляется величина емкости: ее измерение все-таки сложнее, чем измерение сопротивления, хотя умельцы умудряются измерять небольшие емкости с помощью… радиоприемника (подумайте, как). Одно обнадеживает: электроника не стоит на месте, а бурно развивается.
Особо остановимся на электролитических конденсаторах (см. рис. 4, в, г), которые радиолюбители именуют «электролитами». Это полярные приборы. В них используется жидкий и твердый электролиты. Алюминиевые электролитические конденсаторы изготавливаются в виде цилиндров, внутри которых размещается слоистый рулон из чередующихся лент: анод из алюминия, оксидированный его окисью, первый бумажный разделитель, катод из неоксидированного алюминия, второй бумажный разделитель. Вся конструкция помещается в корпус, в который добавляют электролит и герметизируют.
В конденсаторах с твердым электролитом вместо бумаги используется материя, пропитанная нитратом магния. Если размотать внутренний рулон конденсатора, то получится длинный плоский сэндвич с двумя выводами от анода и катода. Рассматривая этот сэндвич как обыкновенный плоский конденсатор с двумя обкладками, не трудно оценить его емкость по известным геометрическим размерам, приняв относительную диэлектрическую постоянную бумаги равной 2. Выполнив нехитрый расчет и сверившись с величиной емкости, проставленной на корпусе, увидим, что мы ошиблись на очень много порядков. Дело в том, что мы сделали принципиальную ошибку, приняв разделительную бумагу за разделяющий диэлектрик. На самом деле диэлектриком в электролитическом конденсаторе служит пленка оксида алюминия, а она гораздо тоньше, да и диэлектрическая постоянная у нее в десятки раз больше. Так что второй обкладкой служит поверхность электролита, соприкасающаяся с окисной пленкой (в рулоне с двух сторон).
Сам электролит и катод являются электродами (тоководами), как в первых конденсаторах: бутылках, банках. Наличие электролита внутри замкнутой полости приводит к тому, что если включить конденсатор на переменное напряжение, то вследствие обильного газовыделения он взорвется. Так что с «электролитами» надо обращаться осторожно.
Диэлектрик в электролитических конденсаторах выполняют также на основе оксидов тантала или ниобия, или ряда полупроводников. Емкости подобных конденсаторов могут достигать 0,5 Ф — это гигантская величина: Фарадей вряд ли поверил бы, что такие емкости возможны. Однако, как оказалось, это далеко не предел возможного. Вернемся теперь к упомянутой ранее комбинации конденсатор-ХИТ, названной ионистором.
Ионистор (по зарубежной терминологии — supercapacitor — суперконденсатор или ультраконденсатор — ultracapacitor) — это энергонакопительный конденсатор, заряд в котором накапливается на границе раздела двух сред: электрода и электролита. (Здесь полезно поразмышлять над вышеупомянутыми опытами Франклина и Адденбрука.)
В качестве обкладок в ионисторе используются три типа материалов: активированный уголь, оксиды металлов и проводящие полимеры. Активированный уголь имеет большую объемную пористость, что позволяет достигнуть плотности емкости 10 Ф/см3 и выше. Ионисторы на основе активированного угля называют также двухслойными или DLC-конденсаторами (от англ. Double Layer Capacitor), поскольку заряд в них хранится в двойном электрическом слое, образующемся вблизи обкладки.
Ионисторы имеют емкости от единиц до нескольких тысяч фарад! Рабочее напряжение ионисторов разных типов составляет от 2,5 до 6,3 В. Энергия, запасенная в ионисторе при прочих равных условиях составляет 1/10 энергии никель-металлгидридной батареи. Батарея заряжается часами, а ионистор — за секунды. Батарея имеет ограниченное число циклов заряд-разряд, а ионистор — практически неограниченное. Конечно, и у ионисторов есть недостатки (напряжение падает при разряде, высок саморазряд и т. д.) и заменить все ХИТ они не могут, но в некоторых случаях они оказываются вне конкуренции или серьезной альтернативой.
В конденсаторах переменной емкости (рис. 5), служащих для настроек радиоприемников на определенную станцию, как правило, используются сдвоенные секциями подвижных (ротор) и неподвижных пластин (статор), разделенных воздухом.

При повороте ротора на некоторый угол изменяется эффективная площадь (площадь перекрытия пластинами статора пластин ротора) и, следовательно, суммарная емкость системы. Форму пластин ротора выполняют так, чтобы зависимость емкости от угла поворота была прямо пропорциональной для емкости, длины волны или частоты.
В «подстроенных» конденсаторах («подстроечниках») используют два керамических диска, на противоположные стороны которых, путем «вжигания», нанесены тонкие серебряные обкладки в виде секторов (полукругов). Вращение одной обкладки относительно другой приводит к изменению емкости системы.
Еще один вид конденсаторов, так называемые «варикапы», являются разновидностью полупроводниковых диодов и будут рассмотрены вместе с последними. Аналогично поступим и с конденсаторными и электретными микрофонами, а также с пьезопреобразователями. Всему свое время.

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.