Подбор и комбинирование

.

Людовик XIV, известный также как «король-солнце», был большим любителем порядка. Он писал: «Надлежащий порядок придает нам уверенный вид, и, судя по всему, нам достаточно просто выглядеть храбрыми». По этому принципу он организовал всю свою артиллерию. Но к 1715 году – в конце его правления, одного из самых длительных в европейской истории, и после ряда крайне разорительных войн – упорядоченная военная система Людовика XIV превратилась в мешанину всевозможных обходных путей. Его преемник, Людовик XV, в 1732 году издал королевский указ, в котором предписывал взяться за работу генерал-лейтенанту Жану-Флорану де Вальеру.


Вальеру было поручено реорганизовать артиллерию, и он как абсолютист хотел создать упорядоченную «систему контроля: рациональность, поставленную на службу деспотизму», как писал историк Кен Олдер. На практике планы Вальера привели к уровню централизации, ранее просто невообразимому во французской армии. В числе впечатляющих достижений Вальера было принятие на вооружение 24-фунтовых орудий (современный калибр 152 мм) – длинноствольных, толстостенных, богато украшенных художественным литьем, обладавших превосходной дальнобойностью и высокой эффективностью.
Но у этих пушек был один существенный недостаток. Хотя они отлично зарекомендовали себя при обороне морских берегов и крепостей, а также в осадных боях, в наступательных военных действиях они проявили себя не лучшим образом. Пушки Вальера были громоздкими, и транспортировать их было тяжело. А маневрирование во время боя в открытом поле требовало таких усилий и ресурсов, что это грозило катастрофой.
Согласно одному военному историку, чтобы транспортировать и обслуживать 34-фунтовое орудие, в 1600-е годы требовалось до 20 лошадей и артиллерийский расчет из 35 человек. Даже 4-фунтовые пушки Вальера имели ствол длиной 238 см и весили около 563 кг, что примерно в 288 раз превышало вес снаряда. В конце концов французы поняли, что их осадное оружие пригодно только для поражения неподвижных целей, а тактические варианты следовало пересмотреть.
Подвижность была решающим качеством, а скорость – обязательным. Французы нуждались в новой системе.

В детстве Жан-Батист Вакет де Грибоваль интересовался военными орудиями. Он родился в 1715 году в семье юриста и впоследствии поступил в артиллерийскую школу для изучения баллистической технологии. В 17 лет Грибоваль записался добровольцем во французскую армию. В 1748 году он модифицировал конструкцию лафета для корабельных орудий, что позволяло перевозить их для наступательных операций. В 1749-м Грибоваль был произведен в капитаны. Позже в том же году Вальер отверг предложение Грибоваля о массовом производстве его лафетов, которые, возможно, облегчили бы передвижение громоздких орудий.
Грибоваля постигло глубокое разочарование. Он ценил установленную строгими правилами упорядоченность пушек Вальера, но считал, что кустарный способ их производства ведет к отставанию. Но еще сильнее Грибоваля угнетало то, что он не пользовался авторитетом в артиллерийском корпусе; его идеи ни на что не влияли. В то время там процветали зависть и соперничество, а присвоения нового звания приходилось ждать годами. В общем, Грибоваля мало что удерживало на своем месте.
Хотя с 1741 года французы и пруссаки были союзниками, подписание в 1756 году первого Версальского договора между Францией и Австрией – двумя заклятыми соперниками – привело Пруссию в ярость. Во франко-прусских отношениях наступило резкое охлаждение. И вскоре Пруссия образовала союз с Великобританией и напала на Францию и ее партнеров: Австрию, Баварию, Россию, Саксонию и Швецию – тем самым развязав Семилетнюю войну, которую Уинстон Черчилль впоследствии назвал «первой мировой».
С началом войны Австрия осознала, что отчаянно нуждается в грамотных военных инженерах, поскольку в ее войсках было много плохо подготовленных офицеров технической службы, которые делали карьеру благодаря фаворитизму, а не личным заслугам. Грибоваль усмотрел в этом свой шанс и добился отправки на военную службу в Австрию, которая была союзником Франции в этой войне. Он интуитивно догадывался, что легкие орудия имеют решающее значение в наступательных боевых действиях, а этого так не хватало системе Вальера по сравнению с мобильными войсками Пруссии. Грибоваль с большим техническим успехом применил несколько измененных им пушек, а также значительно улучшенный в 1748 году лафет для морских орудий.
После такой наглядной демонстрации Грибоваль стал неуклонно приобретать авторитет в австрийской армии. Теперь он задался целью реформировать в стране производственный процесс и поднять его на новый уровень по сравнению с кустарным производством. Ему удалось убедить начальство, сделав акцент на том, что у австрийских орудий огромные преимущества перед французскими. «Просвещенный и рассудительный человек, который разбирается в [относящихся к делу] подробностях и имеет репутацию, позволяющую ему говорить правду, нашел бы в этих двух видах артиллерии способ создать одну, которая почти каждый раз побеждала бы на поле боя, – писал Грибоваль. – Но этому всегда мешают невежество, тщеславие и зависть; это дьявольски трудное начинание, и добиться здесь изменений вовсе не так легко, как переодеться в новый костюм. Затраты слишком велики, к тому же вы подвергаетесь большой опасности, если не уверены в успехе».
В 1762 году, в самый разгар Семилетней войны, Грибоваль сделал свой ход. Во время осады Швейдница он командовал горсткой военных, которая противостояла значительным силам противника. Грибоваль продержался 63 дня против пруссаков в одной из самых кровопролитных битв той эпохи, унесшей около трех тысяч жизней. Методы Грибоваля произвели впечатление даже на его врага, Фридриха Великого. В конце концов пруссаки все же одержали победу. Грибоваля арестовали, но выпустили в конце Семилетней войны.
Так Грибоваль стал «настоящим героем войны». Тогда наблюдавшие за его возвышением французы предложили ему влиятельную должность и заманчивое вознаграждение за возвращение. Первый шаг Грибоваля в новом качестве был дерзким: он решил положить конец преобладанию системы Вальера, считая ее одной из причин поражения Франции. В результате во французской артиллерии возникло ожесточенное соперничество. Грибоваль и Вальер сошлись в борьбе, которую, как пишет Олдер, можно сравнить «с полемикой по поводу стратегической оборонной инициативы в нашу эпоху». По словам историка, это был «ставший достоянием публики спор о наступательных и оборонительных возможностях страны и эффективности передовых технических устройств». В этом поединке сторонники прежнего порядка выступали против приверженцев нового.
Грибоваль начал совершенствовать конструкцию французских орудий. Поставив во главу угла точность, он сформулировал технические характеристики, которые можно было выверять в пределах одной тысячной дюйма, что меньше толщины бумажного листа. Обратившись к опытным металлургам и применив сложные сверлильные станки, Грибоваль добавил к пушкам подъемные винтовые механизмы, что способствовало точному прицеливанию и высокой меткости. Прицелы, добавленные для более удачного расположения орудий, и кожаные лямки для их перемещения оказались большим подспорьем для солдат в ходе боевых действий. Грибоваль увеличил размер колес орудий для легкого хода по пересеченной местности и заменил деревянные оси на чугунные для простоты в обслуживании и ремонте. Эти небольшие, но существенные корректировки повысили удобство применения орудий, а также определили тактику Грибоваля.
В отличие от пушек Вальера, которые приходилось возвращать оружейникам для обслуживания и устранения неисправностей, орудия Грибоваля легко демонтировались и перекомпоновывались. Одной деталью пушки можно было заменить другую, обладавшую теми же техническими характеристиками. Такая взаимозаменяемость стала возможной благодаря принципам «вариации параметров», согласно которым различные компоненты проверяются по отдельности, тогда как другие остаются неизменными, подобно методу решения алгебраических уравнений. Как поясняет Олдер, эта «комбинация факторов», позаимствованная Грибовалем у своего наставника в артиллерийском деле, математического гения Пьера Симона Лапласа, на практике использовалась для максимизации эффективности.
В ходе своей деятельности Грибоваль создал платформу для развития будущих технологий. Его стратегия заключалась в достижении того, что еще никому не удавалось: высокой эффективности, единообразия и заменяемости. Были разработаны таблицы для изготовления изделий, введены стандарты производства и инструкции для легкого и быстрого обслуживания орудий. Этот систематический процесс привел к появлению легких орудий и сделал систему Грибоваля основой самой эффективной артиллерии в Европе.
Эта была радикальная идея для эпохи осадных войн. «Самым значительным нововведением Грибоваля стало то, что его система была настоящей: глубокий синтез организации, технологий, материальной части и тактики, – пишет историк Говард Розен, – а каждый ее аспект, от лошадиной упряжи до подбора и организации личного состава, воплощал единую функциональную концепцию. Ее принципом была полезность, а задачей – подвижность».
И все это не опиралось на классические правила того времени.

В основе прикладного склада ума лежит то, что я называю модульным системным мышлением. Это не какой-то сверхталант, а сочетание методов и принципов. Мышление на уровне систем – не просто систематический подход; здесь большее значение имеет понимание того, что в жизненных перипетиях нет ничего постоянного и все взаимосвязано. Отношения между модулями какой-либо системы порождают целое, которое невозможно понять путем анализа его составных частей.
Например, один из конкретных методов в модульном системном мышлении включает функциональное сочетание деконструктивизма (разделение крупной системы на модули) и реконструкционизма (сведение этих модулей воедино). При этом главная задача – определить сильные и слабые звенья (как эти модули работают, не работают или могли бы работать) и применить эти знания для достижения полезных результатов. Связанная с этим концепция проектирования, используемая в особенности инженерами-программистами, – это пошаговое приближение. Каждое последующее изменение, вносимое ими в продукт или услугу, неизбежно способствует улучшению результата или разработке альтернативных решений. Тут применяется стратегия проектирования «сверху вниз» (ее еще можно назвать «разделяй и властвуй»), при которой каждая подзадача выполняется отдельно в ходе продвижения к конечной цели. Противоположный подход – проектирование «снизу вверх», когда составляющие снова собираются вместе.
Рут Дэвид, эксперт по национальной безопасности и бывший заместитель директора по вопросам науки и технологий в ЦРУ, формулирует этот вопрос так: «Инженерия – синоним не только системного мышления, но и построения систем. Это умение всесторонне анализировать проблему. Нужно не только разбираться в элементах и их взаимозависимости, но и в полной мере понимать их совокупность и ее смысл». Это одна из причин, почему инженерное мышление оказывается полезным во многих сферах жизни общества и эффективно как для отдельных людей, так и для групп.
Модульное системное мышление варьируется в зависимости от обстоятельств, поскольку не существует одного общепризнанного «инженерного метода». Проектирование и возведение небоскреба Бурдж-Халифа в Дубае отличается от написания кодов для Microsoft Office Suite. Проявления инженерии весьма многообразны – от испытаний мячей в аэродинамической трубе для чемпионата мира по футболу до создания ракеты, способной сбить другую ракету в полете. Методы могут разниться даже в пределах одной отрасли. Проектирование такого изделия, как турбовентиляторный двигатель, отличается от сборки такой мегасистемы, как воздушное судно, и, продолжая эту мысль, – от формирования системы систем, например сети воздушных путей сообщения.
Окружающая нас действительность меняется, а с ней – и характер инженерии. Если сравнивать нашу культуру с компьютером, то инженерия представляет собой ее «аппаратное обеспечение». Но инженерия к тому же – еще и надежный двигатель экономического роста. Например, в США, по недавним оценкам, инженеры составляют менее 4 % от общей численности населения, но при этом помогают создавать рабочие места для остальных. Следует признать, что некоторые технические новинки вообще отобрали у людей работу, которой те раньше зарабатывали себе на жизнь; тем не менее инженерные инновации постоянно открывают новые возможности и пути развития.
* * *
У инженерного мышления есть три основных свойства.
Первое – способность «увидеть» структуру там, где ее нет. Наш мир – от хайку[1] до высотных зданий – основан на структурах. И подобно тому как талантливый композитор «слышит» звуки до того, как запишет их в виде нот, грамотный инженер способен визуализировать и воплотить структуры с помощью сочетания правил, моделей и интуиции. Инженерное мышление тяготеет к той части айсберга, которая находится под водой, а не над ее поверхностью. Важно не только то, что заметно; невидимое тоже имеет значение.
В ходе структурированного процесса мышления на уровне систем нужно учитывать, как связаны элементы системы по логике, во времени, последовательности, функциям, а также в каких условиях они работают и не работают. Историку можно применять подобную структурную логику через десятилетия после произошедшего события, а инженеру нужно делать это превентивно, о чем бы ни шла речь – мельчайших деталях или абстракциях высокого уровня. Именно это – одна из основных причин, почему инженеры создают модели: чтобы можно было проводить структурированные обсуждения, исходя из реальности. И, представляя себе какую-либо структуру, принципиально важно обладать достаточной рассудительностью, чтобы понять, когда она имеет ценность, а когда – нет.
Как подтверждают работы Вальера и Грибоваля, системы военного назначения известны своим структурированным подходом к инновационной деятельности. Рассмотрим, к примеру, следующий вопросник, автор которого – Джордж Хайлмайер, бывший директор Управления перспективных исследований и разработок Министерства обороны США, а также один из создателей жидкокристаллических дисплеев, ставших частью сегодняшних технологий воспроизведения изображений. Его подход к новаторству заключается в использовании списка контрольных вопросов, что приемлемо для проекта с четко определенными целями и клиентами.
• Что вы пытаетесь сделать? Четко сформулируйте свои цели, полностью исключив жаргон.
• Как это реализуется сегодня и каков диапазон возможных ограничений?
• Что нового в вашем подходе и почему вы считаете, что он будет успешным?
• Для кого это имеет значение? Если вы достигнете успеха, на что он повлияет?
• Каковы ваши риски и выгоды?
• Во сколько это обойдется? Сколько времени на это уйдет?
• Какие промежуточные и итоговые проверки нужно провести, чтобы узнать, добились ли вы успеха?

По сути, такая структура помогает задавать нужные вопросы в логическом порядке.
Второе свойство инженерного мышления – это способность эффективно проектировать в условиях ограничений. В реальном мире они присутствуют всегда и определяют потенциальный успех или провал нашей деятельности. Учитывая свойственный инженерии практический характер, затруднений и напряжения в ней гораздо больше по сравнению с другими профессиями. Ограничения любого происхождения – налагаемые природой или людьми – не позволяют инженерам ждать, пока все явления будут в полной мере объяснены и поняты. Предполагается, что инженеры должны добиваться максимально возможных результатов в имеющихся условиях. Но, даже если ограничений нет, грамотные инженеры знают, как применять ограничения для достижения своих целей. Временные ограничения стимулируют креативность и находчивость инженеров. Финансовые трудности и явные физические ограничения, зависящие от законов природы, также широко распространены наряду с таким непредсказуемым ограничением, как поведение людей.
«Вообразите ситуацию, в которой каждая очередная версия Macintosh Operating System или Windows представляла бы собой совершенно новую операционную систему, разработанную “с нуля”. Это парализовало бы сферу использования персональных компьютеров», – указывают Оливье де Век и его коллеги-исследователи из Массачусетского технологического института. Инженеры часто дорабатывают свои программные продукты, поступательно учитывая предпочтения клиентов и нужды бизнеса, – а ведь это не что иное, как ограничения. «Изменения, которые поначалу кажутся незначительными, часто приводят к необходимости других изменений, а те, в свою очередь, обусловливают дальнейшие изменения… Нужно умудриться сделать так, чтобы старое продолжало работать, и при этом создавать нечто новое». Этим затруднениям нет конца.
Третье свойство инженерного мышления сопряжено с компромиссами – умением давать продуманные оценки решениям и альтернативам. Инженеры определяют приоритеты в проектировании и распределяют ресурсы, выискивая менее важные цели среди более весомых. Например, при проектировании самолетов типичным компромиссом может стать сбалансированность затрат, веса, размаха крыла и габаритов туалета в рамках ограничений, которые налагаются конкретными требованиями к летно-техническим характеристикам. Трудности такого выбора относятся даже к вопросу о том, нравится ли пассажирам самолет, в котором они летят. Если ограничения можно сравнить с хождением по канату, то компромиссы напоминают ситуацию из басни про лебедя, щуку и рака: идет борьба между тем, что имеется в распоряжении; тем, что возможно; тем, что желательно, и допустимыми пределами.
Пусть наука, философия и религия стремятся к правде в том виде, в котором она им представляется; инженерия же находится в центре обеспечения полезности в условиях ограничений. Структура, ограничения и компромиссы – вот «три кита» инженерного мышления. Для инженера они имеют такое же значение, как для музыканта – такт, темп и ритм.

В теплый день 12 сентября 1962 года, выступая на стадионе Университета Райса, Джон Кеннеди заявил:
«Если бы я сказал вам, мои соотечественники, что мы запустим на Луну, за 386 тыс. км от Центра управления полетами в Хьюстоне, огромную ракету высотой более 90 м, как длина этого футбольного поля, сделанную из новых металлических сплавов, часть которых еще только предстоит изобрести, выдерживающую температуру и нагрузки в несколько раз больше тех, с которыми когда-либо приходилось сталкиваться, собранную с большей точностью, чем самый тонкий часовой механизм, оснащенную всем оборудованием, необходимым для полета, прокладки курса, контроля, связи, питания и выживания, и отправим ее с беспрецедентной миссией к неизвестному небесному телу, а затем благополучно вернем на Землю, причем она войдет в атмосферу на скорости свыше 40 тыс. км/ч, выдержав нагрев до температуры лишь наполовину меньше, чем температура Солнца… и мы все это сделаем, притом правильно и не позже конца этого десятилетия, – то это бы означало, что мы должны проявить настоящую смелость».
Ключевым в обрисованном Кеннеди плане были не амбициозные технические задачи, а утверждение «не позже конца этого десятилетия». Столь ограниченные временные рамки заставили инженеров проекта достичь поставленной цели. Космический корабль «Аполлон-11» успешно совершил посадку на Луне 20 июля 1969 года, даже с опережением установленного срока. В процессе, результатом которого стало прилунение, было создано несколько ценных побочных продуктов, включая новые материалы (например, углеродное волокно) и передовые навигационные системы, используемые сегодня коммерческими авиакомпаниями. Хотя именно благодаря инженерии люди попали на Луну и вернулись обратно целыми и невредимыми, в совокупности эти усилия часто называются ракетостроительной «наукой».
Если ядро науки – открытия, то суть инженерии – создание. Вернувшись к истокам истории человечества, мы видим, что в нашей цивилизации создание инструментов предшествовало открытиям. Фактически многие инструменты инженерии позволили нам достигать новых высот в науке. Ученые сейчас все активнее обращаются к инженерии, чтобы получить немыслимое количество данных и результатов, с помощью которых они предлагают, проверяют или продвигают свои теории. Инженерия же опирается на законы природы и научные доказательства, но также способствует возникновению новых направлений научных знаний. Самолеты летали еще до того, как стали реальностью формальные исследования воздухоплавания. Паровые машины породили науку термодинамику. А промышленная революция открыла множество новых путей для научных изысканий. По словам Тома Питерса, профессора университета Лихай, инженеры порой «охотно “творчески искажают” научный метод или результаты, если это помогает им реализовать задуманное».
«История показывает, – напоминает Дэн Моут, президент Национальной инженерной академии США, – что большинство периодов в развитии человечества определяются инженерией». «Каменный век… назвали так потому, что для изготовления орудий труда люди оббивали камень вручную; бронзовый век получил свое название благодаря тому, что оружие, орудия труда и утварь отливали из бронзы – сплава олова и меди; его сменил железный век, когда люди научились обрабатывать железо молотом и гнуть, чтобы создать сельскохозяйственный инвентарь и инструменты; а кремниевый век отражает материальную основу для производства электроники, – разъясняет Моут. – Разве что ледниковый период не был творением рук человеческих и как явление природы принадлежит к области науки».
Ученые давно утверждают, что инженерия занимает отдельную область знаний и практики, которая гораздо надежнее и вызывает больше доверия, чем другие интеллектуальные традиции, уходящие корнями в философию, – и поэтому заслуживает особого уважения. Со времен Платона в западном мышлении присутствовала склонность подчеркивать превосходство «чистых» знаний, преуменьшая значение инженерии. Досадно и то, что «наука и техника» почти всегда обсуждаются в связке без упоминания инженерии, хотя техника является их общим детищем. «Наука – это инструмент инженерии; никто ведь не утверждает, что скульптуру создает резец, и равным образом нельзя заявлять, будто ракету создает наука, – пишет историк инженерии Генри Петроски. – Если при выработке инженерного решения не опираться ни на что, кроме научных знаний, это вызовет в лучшем случае разочарование, а в худшем – провал».
Джордж Уайтсайдс, эклектичный гарвардский инженер-химик, предлагает еще один полезный пример сравнения науки и инженерии. Если наука заинтересована в «отслеживании механического пути от ионов и нейротрансмиттеров до “Реквиема” Брамса», то инженерия ориентирована на предоставление «практических решений для секвестрации неограниченного количества углекислого газа и обеспечения неограниченного снабжения электроэнергией и чистой водой с 30 %-ной гарантией рентабельности инвестиций после налогообложения, с применением оборудования, которое в Намибии трудно найти». Знания ради самих знаний играют свою роль, но социальный прогресс определяется практическими аспектами действительности.
Нейробиолог Стюарт Файрштейн сравнивает процесс научного познания с поиском черной кошки в темной комнате, особенно когда ее там нет. Это отличается от обычного представления об ученых, которые «терпеливо складывают гигантский пазл». Научные знания идут рука об руку с незнанием. Стимул развития науки, по словам Файрштейна, – это постоянно существующий «общий пробел в знаниях». Эти знания не всегда полезны, и их нельзя использовать для прогнозирования или заявления о каком-то предмете или явлении. «Это осведомленное незнание, восприимчивое незнание, проницательное незнание, – добавляет Файрштейн. – Это не факты и правила, а черные кошки в темных комнатах».
В своей книге «Незнание: как оно управляет наукой» Файрштейн цитирует математика Эндрю Уайлcа, который развивает эту мысль: «Вы ищете на ощупь, суетесь то туда, то сюда, неуклюже на что-то натыкаетесь, а затем кто-то находит выключатель – зачастую случайно, – зажигается свет, и все говорят: “А, вот как это выглядит”, а потом направляются в следующую темную комнату в поисках очередной таинственной черной кошки».
Нас учат, что ценность науки – в ее объективности. В идеале наука избегает ожидаемых результатов. Инженерия часто противоречит этой идее: в своих лучших проявлениях она берет себе в союзники субъективность. Но объективность может быть особенно полезной для инженеров при попытках предотвращать или анализировать неудачи. Наука и инженерия действительно образуют симбиоз в том смысле, что они помогают друг другу выявить свои внутренние противоречия и недостатки. В науке нет «чистового экземпляра» знаний, в отличие, например, от чертежа Бруклинского моста. Наши гипотезы могут повести нас в любом направлении.

Я родился в семье правоверных индусов-браминов, принадлежащей к низшему слою среднего класса, в сельской местности Тамил-Наду – прибрежном штате на юге Индии. В таких обстоятельствах мой путь к инженерии был продиктован необходимостью добиться успеха на каком-то поприще. Мою тягу к науке вызвал не набор «Юный химик» (мои родители не могли его себе позволить) и не конструктор Lego. Пожалуй, мой интерес к технике пробудился в начале 1980-х, во время наблюдений за работающими на угле паровозами (благодаря отцу, который по утрам ездил на велосипеде на местную железнодорожную станцию и брал меня с собой).
Насколько я помню, я даже не блистал в математике. Перед экзаменами я обязательно посещал храм Ганеши – божества со слоновьей головой – и молился о хороших оценках. Мой дед со стороны отца в течение дня был земледельцем, а на закате и рассвете – жрецом. В детстве мы с младшим братом помогали ему в нашем деревенском храме возле Тируваннамалай – группы холмов, которые считаются древнее Гималаев. Мы зачарованно слушали проникновенные мантры на санскрите, которые дедушка читал во время утренних и вечерних молитв. А еще мы любили, когда он рассказывал нам перед сном сюжеты из древних эпосов «Рамаяна» и «Махабхарата», пока мы засыпали на соломенных циновках.
Во время учебы в Индии энергетика окружающей среды определила мои устремления. Целеустремленность, сведение к минимуму отвлекающих факторов и отличная успеваемость – такими были самые желательные результаты для моих школ. По сути, мое образование можно сравнить с конвейером. В старших классах я размышлял, что еще могло бы меня заинтересовать; в местной культуре особенно ценились дипломы в области медицины, коммерции и инженерии. Я шел на пристань Мадрас и бродил по щиколотку в волнах Бенгальского залива в надежде на озарение. Мой отец – химик, переквалифицировавшийся в бухгалтера, – и мама-домохозяйка советовали мне выбрать профессию в области, которая мне интересна.
Но жесткая конкуренция в школе у меня, моего брата, да и у наших друзей не оставляла нам ни времени, ни возможности исследовать, экспериментировать и что-то по-настоящему полюбить. Честно говоря, мой выбор инженерии напоминал брак по расчету – продиктованный прагматичными соображениями путь к успеху в области, где я имел достаточные знания. Я решил специализироваться на проектировании контрольно-измерительных систем – тогда это была свежая, полная увлекательных задач программа Мадрасского университета, которая еще не стала излишне популярной. В итоге я заинтересовался развивающимися технологиями биомедицинской инженерии, и это, в сочетании со щедрой стипендией, привело меня в аспирантуру в Нью-Йорке за месяц до 11 сентября 2001 года.
Со временем я осознал, что инженерия – это явление, по силе воздействия превосходящее математические модели, над которыми я ломал голову; по значению – разработанные мной электронные схемы; по точности – сенсоры и устройства, которые я испытывал, по содержанию – программы, которые отлаживал, и что пресный технический жаргон совершенно не в состоянии передать, насколько она увлекательна. Мой первоначальный интерес к инженерии в целом постепенно перерос в непреходящую к ней любовь, ставшую частью меня.

Подход Грибоваля тоже разрабатывалсяв рамках триады, образованной структурой, ограничениями и компромиссами. Полученные результаты стали образцом точности и крупномасштабного производства, имевшего далеко идущие последствия для общества. Более того, эти идеи способствовали началу эпохи массового производства, которая затем дала толчок распространению инженерии в ее современном виде.
Благодаря внедренной Грибовалем структуре артиллерийские орудия стали делать и использовать более продуманно и целенаправленно. Он составил инструкции по подбору и комбинированию нужных деталей орудий, воспользовавшись возможностью их взаимозаменяемости, которая и сейчас активно применяется в инженерии. Один из технических аспектов, обеспечивающих взаимозаменяемость, – практика «функциональной связи». Отдельные модули конструкции представляли собой не разрозненное скопление частей, а систему со стратегическими взаимосвязями, призванную выполнять единую функцию. При такой стратегии ошибки быстро выявлялись, изучались, исправлялись, а результаты подвергались проверке – процесс, который впоследствии доведет до совершенства будущая технология конвейерного производства. Пушки должны были обладать точностью стрельбы и долговечностью. Поскольку в те века еще не изобрели сложное программное обеспечение для имитационного моделирования, при выработке устойчивых решений такие инженеры, как Грибоваль, опирались на свои вычисления, личные знания, опыт и умения. Именно им мы обязаны той тщательности, с которой были спроектированы храмы, мосты, замки и другие системы.
Ограничения являлись постоянными спутниками Грибоваля. Ставки были колоссальными – ведь требовалось выиграть войну, поэтому от его решений ждали эффективности. Для таких прирожденных философов, как Галилео Галилей и Исаак Ньютон, изучение баллистики было, по выражению Кена Олдера, «математическим спортзалом», который существовал исключительно в их уме. «Математика представляла для них форму “дескрипционизма”, способ описать в количественном выражении, как изменения в определенных измеряемых параметрах влияли на какой-то другой интересующий их параметр, – говорит Олдер. – Математика сплошь и рядом позволяла инженерам избегать настоящего причинного объяснения». В отличие от тех, кому было не обязательно применять свои знания на практике, Грибовалю в ходе усовершенствования снарядов артиллерийских орудий приходилось преодолевать реальные трудности, связанные с ветром и сопротивлением воздуха. Он воспользовался методом вариации параметров, разбирая и снова собирая детали пушек, чтобы оценить сильные и слабые стороны своей системы производства и выяснить, как улучшить характеристики орудий. Чтобы исполнить свое предназначение, они должны были стрелять метко и в соответствии с ожиданиями.
И наконец, обстоятельства вынуждали Грибоваля выбирать между конструктивными решениями. Что важнее – улучшать маневренность или разрабатывать более мощные орудия? Можно ли уменьшить избыточный вес пушки без увеличения при этом частоты ее отказов? Одной из конструктивных особенностей пушек Грибоваля стало то, что он избавил их от лишней художественной отделки, отдав приоритет подвижности, а не красоте. Разумные компромиссы Грибоваля в сочетании с постоянными экспериментами с вариациями параметров резко повысили эффективность производства и удобство транспортировки артиллерийских орудий, а также их качество.
Во время службы в австрийской армии Грибоваля поразил царящий там размах фаворитизма и поддержка некомпетентных офицеров технической службы, тогда как квалифицированные инженеры всячески притеснялись. Грибоваль писал:
[С инженерами] обходятся сурово, а порой бесстыдно… Когда офицера даже низшего чина отправляют на какое-либо задание, он неизменно берет с собой пару инженеров, которые и выполняют трудные и неприятные части задачи. И если что-то идет не так, офицер возлагает на них всю вину, но в случае успеха приписывает все заслуги себе. Посмотрите, в каком состоянии находятся инженеры… и увидите, что большинство из них лишились лошадей и денег, измучены крайней усталостью и плохим обращением.
Чтобы обойти эту проблему, Грибоваль помог выстроить систему обучения личного состава, учитывающую его результаты, и тем самым содействовал возникновению эпохи «просветительской инженерии», как назвал ее Олдер. Для оценки основных профессиональных качеств использовалась геометрия, техническое черчение и математический анализ, которые впоследствии стали стандартными курсами в артиллерийских училищах и военных академиях. И сейчас, по прошествии веков, эти предметы продолжают служить основой инженерного образования. Используя свои технические знания для решения прикладных задач, Грибоваль помог резко повысить создание рабочих мест, количество нововведений в оборонном деле, способствовал быстрому росту новых отраслей и улучшению национальной безопасности. Ведь, как говорится, «в теории между теорией и практикой нет разницы, а на практике есть».

Комментирование и размещение ссылок запрещено.